Honors Physics
Winnetonka High School

N	Davis Datas	C
Name:	_Due Date:	Score:

Horizontally Launched Projectiles

Use the GUESS method and show all of your work.

CALCULATIONS: CANNON LAUNCH HEIGHT

- 1. A ball is launched straight out from a 10 meter tall cliff. It is launched horizontally at 15 m/s.
 - a. How long is the ball in the air?
 - b. How far does it land from the cliff?

1st <u>Given</u> (label the picture): X direction Y direction

 4^{th} <u>Substitute and Solve</u>: Write out the equation first, then substitute values in.

2nd Unknown:

3rd Equations: (Circle the equation)

$$\begin{split} \Delta x &= v_x \mathbf{t} & v_{yf} &= v_{yi} + g \mathbf{t} \\ & v_{yf}^2 &= v_{yi}^2 + 2g \Delta y \\ & y_f &= y_i + v_{yi} t + \frac{1}{2} g t^2 \end{split}$$

2. A ball is launched	straight out from	a 40 meter tall cliff.	It is launched horizontally	, at 15 m/s.
Z. / C Dail 13 laalicilea	July Dat Holli	a io inceen can emin.	it is iddirected from Edition;	ac ±3 111, 3.

- a. How long is the ball in the air?
- b. How far does it land from the cliff?

1st <u>Given</u> (label the picture): X direction Y direction

4th <u>Substitute and Solve</u>: Write out the equation first, then substitute values in.

2nd <u>Unknown</u>:

3rd Equations: (Circle the equation)

$$\Delta x = v_x t$$

$$v_{yf} = v_{yi} + gt$$

$$v_{yf}^2 = v_{yi}^2 + 2g\Delta y$$

$$y_f = y_i + v_{yi}t + \frac{1}{2}gt^2$$

5th State the answer:

3. Why does the ball's range increase when the cliff is higher?

CALCULATIONS: INITIAL HORIZONTAL VELOCITY

- 4. A ball is launched straight out from a 20 meter tall cliff. It is launched horizontally at 7.5 m/s.
 - a. How long is the ball in the air?
 - b. How far does it land from the cliff?

1st <u>Given</u> (label the picture): X direction Y direction

4th <u>Substitute and Solve</u>: Write out the equation first, then substitute values in.

2nd <u>Unknown</u>:

3rd Equations: (Circle the equation)

$$\begin{split} \Delta x &= v_x \mathbf{t} \\ v_{yf} &= v_{yi} + g \mathbf{t} \\ v_{yf}^2 &= v_{yi}^2 + 2g \Delta y \\ y_f &= y_i + v_{yi} t + \frac{1}{2} g t^2 \end{split}$$

5. /	A hall	is launched	straight out	from a 20	meter tall	cliff. It is	launched	horizontally	, at 15 m	/s.
J.,	¬ Dun	13 lauricheu	Judigiit Out	110111 4 20	meter tan	CIIII. IL IS	iadiiciica	110112011tany	, at ±3 111/	J.

- a. How long is the ball in the air?
- b. How far does it land from the cliff?

1st <u>Given</u> (label the picture): X direction Y direction

 4^{th} <u>Substitute and Solve</u>: Write out the equation first, then substitute values in.

2nd <u>Unknown</u>:

3rd Equations: (Circle the equation)

$$\begin{split} \Delta x &= v_x \mathsf{t} & v_{yf} &= v_{yi} + g \mathsf{t} \\ & v_{yf}^2 &= v_{yi}^2 + 2g \Delta y \\ & y_f &= y_i + v_{yi} t + \frac{1}{2} g t^2 \end{split}$$

5th State the answer:

6. Does does the time in the air stay the same?

7. Why does the ball's range increase when the initial horizontal velocity is faster?

MORE CALCULATIONS

8. A ball is launched straight out from a 10 meter tall cliff. It lands 85 meters from the base of the cliff.

- a. How long is the ball in the air? (see number one since you know the time in the air depends on the height)t =
- b. How fast is it travelling when it is fired?

1st <u>Given</u> (label the picture): X direction Y direction

 4^{th} <u>Substitute and Solve</u>: Write out the equation first, then substitute values in.

2nd Unknown:

3rd Equations: (Circle the equation)

$$\begin{split} \Delta x &= v_x \mathsf{t} & v_{yf} &= v_{yi} + g \mathsf{t} \\ & v_{yf}^2 &= v_{yi}^2 + 2g \Delta y \\ & y_f &= y_i + v_{yi} t + \frac{1}{2} g t^2 \end{split}$$

9. A ball is launched straight out from a 40 meter tall cliff. It lands 85 meters from the base of the cliff.

- a. How long is the ball in the air? (see number two since you know the time in the air depends on the t = ____ height)
- b. How fast is it travelling when it is fired?

1st <u>Given</u> (label the picture):

X direction Y direction

> 4th <u>Substitute and Solve</u>: Write out the equation first, then substitute values in.

2nd Unknown:

3rd Equations: (Circle the equation)

$$\begin{split} \Delta x &= v_x \mathbf{t} \\ v_{yf} &= v_{yi} + g \mathbf{t} \\ v_{yf}^2 &= v_{yi}^2 + 2g \Delta y \\ y_f &= y_i + v_{yi} t + \frac{1}{2} g t^2 \end{split}$$

10.	A ball that is launched straight out from cliff lands on the valley below 3.4 seconds after it is released
	The range of the ball is 240 m.

- a. How tall is the cliff?
- b. How fast is it travelling when it is fired?

1 st Given (label	the picture):
X direction	Y direction

 $4^{th} \ \underline{Substitute \ and \ Solve} \hbox{:} \ \ Write \ out \ the \ equation \ first, \ then \\ substitute \ values \ in.$

2nd <u>Unknown</u>:

3rd Equations: (Circle the equation)

$$\Delta x = v_x t$$

$$v_{yf} = v_{yi} + gt$$

$$v_{yf}^2 = v_{yi}^2 + 2g\Delta y$$

$$y_f = y_i + v_{yi}t + \frac{1}{2}gt^2$$

5th State the answer:

11. Why does the ball's range increase when the cliff is higher?