Projectile Motion

'Launched at an Angle' Virtual Lab

Learning Targets:

I can name the factors that affect how far a projectile will travel before hitting the ground. I can design experiments to carefully test **ONE** experimental question at a time.

Define the following terms, and answer the questions below:

- 1. Initial speed: Hypothesis: Do you think this would affect the *range* of a *projectile*? Circle YES or NO.
- 2. launch angle: Hypothesis: Do you think this would affect the *range* of a *projectile*? Circle YES or NO.
- projectile's mass:

Hypothesis: Do you think this would affect the range of a projectile? Circle YES or NO.

What is the effect of launch velocity (initial speed) on range?

Take out your laptop. Go to "bitly.com/phet-projectile". Get acquainted with the projectile simulator.

4. Conduct an experiment to determine how *initial speed* affects the range of a projectile. What will be your independent variable? ______

What will be your dependent variable?

5. Make a table and a sketch to record your results.

Set launch angle to 30°. Select the football.			
Initial speed Range			

6. Conclusion: Explain what you found about the effect of *initial speed* on the range of a projectile.

What is the effect of launch angle on range?

7. Conduct an experiment to determine how <u>launch angle</u> affects the range of a projectile. What will be your independent variable?

What will be your dependent variable? _____

8. Make a table and a sketch to record your results. Use the launch angles provided

Set launch velocity to 40 m/s. Select the football.			
launch angle	range		
15°			
30°			
40°			
45°			
50°			
60°			
75°			

9. Conclusion: How was range effected as launch angle increased from 15° to 45°?

How was range effected as launch angle increased from 45° to 75° ?

What is the effect of projectile mass on range?

 Conduct an experiment to determine how <u>mass</u> affects the range of a projectile. What will be your independent variable?

What will be your dependent variable? _____

11. Make a table and a sketch to record your results.

Set launch velocity to 40 m/s. Set angle to 30° .			
mass range			

12. Conclusion: Explain what you found about the effect of *mass* on the range of a projectile.

Discover the relationship between complementary angles and range

13. Select the *football* with a launch velocity of 10 m/s. Complete the table below:

	Angle	Range	Time	Angle	Range	Time
Pair one 15° and 75°	15°			75°		
Pair two 30° and 60°	30°			60°		
Pair three 22° and 68°	22°			68°		
Pair four 40° and°	40°					
Pair five 5° and°	5°					
Last pair 45° and 45°	45°					

- 14. Compare the ranges of the angle pairs listed above. What is the sum of the angles that produce the same range?
- 15. Compare the time in the air for each of these angles, and explain any difference. Use the football and a starting velocity of 20 m/s.

Angle 1:	15°	Time 1:	Angle 2: 75°	Time 2:
Explain:				

16. What advice about angle and kicking speed would you give to a punter who wants to maximize the distance of a punt? Why?

17. What advice about angle and speed would you give a punter that is not trying to maximize distance, but instead wants a long "hang time" to allow his teammates as much time as possible to get downfield?